Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm
نویسندگان
چکیده
Abstract—Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.
منابع مشابه
Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm
Abstract—Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The prese...
متن کاملDAMAGE DETECTION OF BRIDGE STRUCTURES IN TIME DOMAIN VIA ENHANCED COLLIDING BODIES OPTIMIZATION
In this paper, a method is presented for damage detection of bridges using the Enhanced Colliding Bodies Optimization (ECBO) utilizing time-domain responses. The finite element modeling of the structure is based on the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in d...
متن کاملDamage detection of skeletal structures using particle swarm optimizer with passive congregation (PSOPC) algorithm via incomplete modal data
This paper uses a PSOPC model based non-destructive damage identification procedure using frequency and modal data. The objective function formulation for the minimization problem is based on the frequency changes. The method is demonstrated by using a cantilever beam, four-bay plane truss and two-bay two-story plane frame with different scenarios. In this study, the modal data are provided nume...
متن کاملA TWO-STAGE DAMAGE DETECTION METHOD FOR LARGE-SCALE STRUCTURES BY KINETIC AND MODAL STRAIN ENERGIES USING HEURISTIC PARTICLE SWARM OPTIMIZATION
In this study, an approach for damage detection of large-scale structures is developed by employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization (HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural damages. After determining the suspected damage locations, the severity of damages is obtained based on variations of modal ...
متن کاملDAMAGE IDENTIFICATION OF TRUSSES BY FINITE ELEMENT MODEL UPDATING USING AN ENHANCED LEVENBERG-MARQUARDT ALGORITHM
This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference of recorded acceleration of real damaged structure and hypothetical damaged structure, by updating physical parameters in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is based on sensitivity analysis and pr...
متن کامل